8 research outputs found

    Signals of primordial phase transitions on CMB maps

    Get PDF
    The analysis of the CMB anisotropies is a rich source of cosmological informations. In our study, we simulated the signals produced by the relics of a first order phase transition occured during an inflationary epoch in the early Universe. These relics are bubbles of true vacuum that leave a characteristic non-Gaussian imprint on the CMB. We use different statistical estimators in order to evaluate this non-Gaussianity. We obtain some limits on the allowed values of the bubble parameters comparing our results with the experimental data. We also predict the possibility to detect this signal with the next high resolution experiments.Comment: 2 pages, submitted to Proceedings of 9th Marcel Grossmann meetin

    Present limits to cosmic bubbles from the COBE-DMR three point correlation function

    Get PDF
    The existence of large scale voids in several galaxy surveys suggests the occurence of an inflationary first order phase transition. This process generates primordial bubbles that, before evolving into the present voids, leave at decoupling a non-Gaussian imprint on the CMB. I this paper we evaluate an analytical expression of the collapsed three point correlation function from the bubble temperature fluctuations. Comparing the results with COBE-DMR measures, we obtain upper limits on the allowed non-Gaussianity and hence on the bubble parameters.Comment: 4 pages, 3 figures; submitted to MNRA

    Scalar-Tensor Models of Normal and Phantom Dark Energy

    Get PDF
    We consider the viability of dark energy (DE) models in the framework of the scalar-tensor theory of gravity, including the possibility to have a phantom DE at small redshifts zz as admitted by supernova luminosity-distance data. For small zz, the generic solution for these models is constructed in the form of a power series in zz without any approximation. Necessary constraints for DE to be phantom today and to cross the phantom divide line p=ρp=-\rho at small zz are presented. Considering the Solar System constraints, we find for the post-Newtonian parameters that γPN<1\gamma_{PN}<1 and γPN,01\gamma_{PN,0}\approx 1 for the model to be viable, and βPN,0>1\beta_{PN,0}>1 (but very close to 1) if the model has a significantly phantom DE today. However, prospects to establish the phantom behaviour of DE are much better with cosmological data than with Solar System experiments. Earlier obtained results for a Λ\Lambda-dominated universe with the vanishing scalar field potential are extended to a more general DE equation of state confirming that the cosmological evolution of these models rule them out. Models of currently fantom DE which are viable for small zz can be easily constructed with a constant potential; however, they generically become singular at some higher zz. With a growing potential, viable models exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an expanded discussion of various point

    The accelerating universe and a limiting curvature proposal

    Get PDF
    We consider the hypothesis of a limiting minimal curvature in gravity as a way to construct a class of theories exhibiting late-time cosmic acceleration. Guided by the minimal curvature conjecture (MCC) we are naturally lead to a set of scalar tensor theories in which the scalar is non-minimally coupled both to gravity and to the matter Lagrangian. The model is compared to the Lambda Cold Dark Matter concordance model and to the observational data using the gold SNeIa sample of Riess et. al. (2004). An excellent fit to the data is achieved. We present a toy model designed to demonstrate that such a new, possibly fundamental, principle may be responsible for the recent period of cosmological acceleration. Observational constraints remain to be imposed on these models.Comment: 22 pages, 7 figures; revised version to appear in JCAP; references adde

    The growth of matter perturbations in some scalar-tensor DE models

    Full text link
    We consider asymptotically stable scalar-tensor dark energy (DE) models for which the equation of state parameter wDEw_{DE} tends to zero in the past. The viable models are of the phantom type today, however this phantomness is milder than in General Relativity if we take into account the varying gravitational constant when dealing with the SNIa data. We study further the growth of matter perturbations and we find a scaling behaviour on large redshifts which could provide an important constraint. In particular the growth of matter perturbations on large redshifts in our scalar-tensor models is close to the standard behaviour δma\delta_m \propto a, while it is substantially different for the best-fit model in General Relativity for the same parametrization of the background expansion. As for the growth of matter perturbations on small redshifts, we show that in these models the parameter γ0γ(z=0)\gamma'_0\equiv \gamma'(z=0) can take absolute values much larger than in models inside General Relativity. Assuming a constant γ\gamma when γ0\gamma'_0 is large would lead to a poor fit of the growth function ff. This provides another characteristic discriminative signature for these models.Comment: 13 pages, 7 figures, matches version published in JCA
    corecore